Computational Aspects of Regression Analysis of Interval Data

نویسنده

  • Michal Černý
چکیده

We consider linear regression models where both input data (the values of independent variables) and output data (the observations of the dependent variable) are interval-censored. We introduce a possibilistic generalization of the least squares estimator, so called OLS-set for the interval model. This set captures the impact of the loss of information on the OLS estimator caused by interval censoring and provides a tool for quantification of this effect. We study complexity-theoretic properties of the OLS-set. We also deal with restricted versions of the general interval linear regression model, in particular the crisp input – interval output model. We give an argument that natural descriptions of the OLS-set in the crisp input – interval output cannot be computed in polynomial time. Then we derive easily computable approximations for the OLS-set which can be used instead of the exact description. We illustrate the approach by an example. Keywords—linear regression; interval-censored data; computational complexity

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical and Verified Numerical Results Concerning Interval Continuous-time Algebraic Riccati Equations

This paper focuses on studying the interval continuous-time algebraic Riccati equation A∗X + XA + Q − XGX = 0, both from the theoretical aspects and the computational ones. In theoretical parts, we show that Shary’s results for interval linear systems can only be partially generalized to this interval Riccati matrix equation. We then derive an efficient technique for enclosing the united stable...

متن کامل

Interval linear regression

‎In this paper‎, ‎we have studied the analysis an interval linear regression model for fuzzy data‎. ‎In section one‎, ‎we have introduced the concepts required in this thesis and then we illustrated linear regression fuzzy sets and some primary definitions‎. ‎In section two‎, ‎we have introduced various methods of interval linear regression analysis‎. ‎In section three‎, ‎we have implemented nu...

متن کامل

Interval Malmquist Productivity Index in DEA

Data envelopment analysis is a method for evaluating the relative efficiency of a collection of decision making units. The DEA classic models calculate each unit’s efficiency in the best condition, meaning that finds a weight that the DMU is at its maximum efficiency. In this paper, utilizing the directional distance function model in the presence of undesirable outputs, the efficiency of each ...

متن کامل

Constrained linear regression models for symbolic interval-valued variables

This paper introduces an approach to fitting a constrained linear regression model to interval-valued data. Each example of the learning set is described by a feature vector for which each feature value is an interval. The new approach fits a constrained linear regression model on the midpoints and range of the interval values assumed by the variables in the learning set. The prediction of the ...

متن کامل

Multiple Fuzzy Regression Model for Fuzzy Input-Output Data

A novel approach to the problem of regression modeling for fuzzy input-output data is introduced.In order to estimate the parameters of the model, a distance on the space of interval-valued quantities is employed.By minimizing the sum of squared errors, a class of regression models is derived based on the interval-valued data obtained from the $alpha$-level sets of fuzzy input-output data.Then,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013